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Abstract. We correct a claim, made in [6], that the proof of the key result in [3] about the
existence of a monotone optimal multi-partition was incomplete; further, we provide a sortability
interpretation for the criticized step of that proof.

Consistency and sortability of properties of combinatorial objects provide a
framework for generating objects that satisfy a prescribed property within a given
class of objects, by iteratively moving within the class by making ‘local changes’.
More specifically, consider a family F of combinatorial objects, a property Q
that elements of F may have, and a statistics S over the elements of F . If S
is guaranteed to decline under ‘local changes’ of elelments in F that are aimed
at acquiring Q in a ‘local sense’ while maintaining the affiliation in F , then it
is possible to use an iterative process that will generate an element in F which
‘satisfies Q locally’. If property Q is consistent, that is, ‘local satisfiability’ suf-
fices for ‘global satisfiability’, then such processes will generate objects in F
that are guaranteed to satisfy Q. Sortability and consistency were introduced in
the context of partitions over a one-dimensional parameter spaces in [4] (see [1]
for a comprehensive study within this context). The approach was extended to
partitions over multi-dimensional parameter spaces in [2] and to multi-partitions
in [6].

Suppose that t and p are positive integers, and t types of items are to be assigned
to p parts subject to prescribed specifications. Specifically, there are nonnegative
integers �nuj 
u=1�����t�j=1�����p. For each u=1�����t�nu≡

∑p
j=1=nuj items,

indexed 1�����nu, of type u are to be assigned to parts indexed 1�����t, with
nuj items of type u assigned to part j. A multi-partition is such an assignment;
formally, a multi-partition � is a collection ��uj 
u=1�����t�j=1�����p where
for each j���uj 
 j=1�����p partitions �1�����nu and for each u and j���uj �=nuj .
A multi-partition � ismonotone if there exists a ranking j1�����jp of �1�����p such
that part j1 gets the first nuj1

items of each type u, part j2 gets the next nuj2
items
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of each type u, and so on, until part jp get the last nujp
items of each type u, that is,

if �=��uj 
u=1�����t�j=1�����p, then �ujs
=�
∑s−1

r=1nujr
+1�����

∑s
r=1nujr

 for
each u=1�����t and s=1�����p.

Suppose that each item i of type u is associated with a real number 0<rui�1;
without loss of generality we will assume that items are numbered so that

0<rul�ru2� ···�runu �1 for each u=1�����t� (1)

Also, assume that a monotone (Boolean) function J 
 �0�1P →�0�1 is given.
For a multi-partition �=��uj
 u=1�����t� j=1�����p let

r���j≡
t∏

u=1

∏
j∈�uj

rui for each j=1�����p�

and

R���≡ ∑
s∈�0�1�P

J �s�

{ ∏
�j
sj=0

�1−r���j�

}{ ∏
�j
sj=1

r���j

}
�

It is claimed in [6] that the proof in [3] that there exists a monotone
multi-partition � which maximizes R��� over all multi-partitions has a flaw as the
statistics

∑
j

∑
umax�uj need not decline strictly as pairs of parts are rearranged

iteratively (while preserving optimality). But, the argument in [3] made no such
claim. The core of the argument in [3] lies in an an inductive proof (Lemma 2)
that considers a relaxation of the problem (removed later on) that requires that the
inequalities in (1) hold strictly and that some item type w has nwj >0 for each j.
The adopted inductive hypothesis is that some parts j1�����jk−1 are ordered mono-
tonically, in order, in some optimal multi-partition � (that is, the parts in j1 of
all types are those with the smalles indices, those in j2 are the next ones, etc.).
Let jk be the (unique) index for which �wjk

contains
∑k−1

r=1nwjr
+1. With � ′ as

the multi-partition that minimizes �
∑

umax�ujk
� over the optimal multi-partitions

� that have parts j1�����jk−1 fixed in the above monotone arrangement and have∑k−1
r=1nwjr

+1∈�wjk , it is argued that � ′ and j1�����jk satisfy the inductive hypoth-
esis with k repalacing k−1. With k=p, the inductive hypothesis establishes that
there exists a monotone optimal multi-partition. Essentially, the argument we
just described shows that within the class of multi-partitions � that have parts
j1�����jk−1 fixed in a monotone arrangement and have

∑k−1
r=1nwjr

+1∈�wjk , one can
rearrange pairs of parts so as to reduce

∑
umax�ujk

. But, no claim is made in [3]
about reducing

∑
j

∑
umax�uj ; in fact, examples in [6, Section 5] demonstrate

that
∑

j

∑
umax�uj need not decline in the above process.
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The approach followed in [3] (and explained in the preceding paragraph) can
be cast as a sortability argument with the lexicographic statistics:

S��� ≡
(

min
j1

∑
umax�uj1∑

unuj1

�min
j1�j2

∑
umax�uj1

+∑umax�uj2∑
unuj1

+∑unuj2

�����

min
j1�����jk

∑k
r=1

∑
umax�ujr∑k

r=1

∑
unujr

����� min
j1�����jp

∑p
r=1

∑
umax�ujr∑p

r=1

∑
unujr

)
�

where maxima over empty sets are defined as 0 and the assumption nwj >0 for
each j assures that no denominator is zero. In particular, note that S���=�1�����1�
if and only if � is monotone. The essence of the proof in [3] is the demonstration
that, when the inequalities in (1) are strict, S��� can be reduced (lexicographically)
within the class of optimal multi-partitions which are not monotone by pairwise
shuffling of parts. This is accomplished by using the fact [3, Corollary 1] that
if there is an optimal multi-partition which is not (j1�j2)-monotone, then all
partitions which are the result of shuffles among part j1 and j2 are optimal. This
property depends on the convexity of the function g
 �−
�0�p→�0�1� with

g�y� = ∑
s∈�0�1p

J �s�

[ ∏
�i
si=0

�1−eyi�

][ ∏
�i
si=1

eyi

]
for every y∈�−
�0�p�

and does not extend to asymmetric Schur convex functions (see [5]). We further
note that the removal of the assumptions that one item-type is required by all
the parts and that the inequalities of (1) hold strictly are not standard ‘sortability
arguments’ (as considered, for example, in [6]).
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