A LETTER TO THE EDITOR

A Comment on: F.K. Hwang, Y.M. Wang and

J.S. Lee, 'Sortability of Multi-Partitions', Journal of Global Optimization 24 (2002), pp. 463-472

URIEL G. ROTHBLUM
Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel
(e-mail: rothblum@ie.technion.ac.il.)

(Received 3 September 2003; accepted 14 October 2003)

Abstract

We correct a claim, made in [6], that the proof of the key result in [3] about the existence of a monotone optimal multi-partition was incomplete; further, we provide a sortability interpretation for the criticized step of that proof.

Consistency and sortability of properties of combinatorial objects provide a framework for generating objects that satisfy a prescribed property within a given class of objects, by iteratively moving within the class by making 'local changes'. More specifically, consider a family F of combinatorial objects, a property Q that elements of F may have, and a statistics S over the elements of F. If S is guaranteed to decline under 'local changes' of elelments in F that are aimed at acquiring Q in a 'local sense' while maintaining the affiliation in F, then it is possible to use an iterative process that will generate an element in F which 'satisfies Q locally'. If property Q is consistent, that is, 'local satisfiability' suffices for 'global satisfiability', then such processes will generate objects in F that are guaranteed to satisfy Q. Sortability and consistency were introduced in the context of partitions over a one-dimensional parameter spaces in [4] (see [1] for a comprehensive study within this context). The approach was extended to partitions over multi-dimensional parameter spaces in [2] and to multi-partitions in [6].
Suppose that t and p are positive integers, and t types of items are to be assigned to p parts subject to prescribed specifications. Specifically, there are nonnegative integers $\left\{n_{u j}: u=1, \ldots, t, j=1, \ldots, p\right\}$. For each $u=1, \ldots, t, n_{u} \equiv \sum_{j=1}^{p}=n_{u j}$ items, indexed $1, \ldots, n_{u}$, of type u are to be assigned to parts indexed $1, \ldots, t$, with $n_{u j}$ items of type u assigned to part j. A multi-partition is such an assignment; formally, a multi-partition π is a collection $\left\{\pi_{u j}: u=1, \ldots, t, j=1, \ldots, p\right\}$ where for each $j,\left\{\pi_{u j}: j=1, \ldots, p\right\}$ partitions $\left\{1, \ldots, n_{u}\right\}$ and for each u and $j,\left|\pi_{u j}\right|=n_{u j}$. A multi-partition π is monotone if there exists a ranking j_{1}, \ldots, j_{p} of $\{1, \ldots, p\}$ such that part j_{1} gets the first $n_{u j_{1}}$ items of each type u, part j_{2} gets the next $n_{u j_{2}}$ items
of each type u, and so on, until part j_{p} get the last $n_{u j_{p}}$ items of each type u, that is, if $\pi=\left\{\pi_{u j}: u=1, \ldots, t, j=1, \ldots, p\right\}$, then $\pi_{u j_{s}}=\left\{\sum_{r=1}^{s-1} n_{u j_{r}}+1, \ldots, \sum_{r=1}^{s} n_{u j_{r}}\right\}$ for each $u=1, \ldots, t$ and $s=1, \ldots, p$.
Suppose that each item i of type u is associated with a real number $0<r_{u i} \leqslant 1$; without loss of generality we will assume that items are numbered so that

$$
\begin{equation*}
0<r_{u l} \leqslant r_{u 2} \leqslant \cdots \leqslant r_{u n_{u}} \leqslant 1 \text { for each } u=1, \ldots, t \tag{1}
\end{equation*}
$$

Also, assume that a monotone (Boolean) function $J:\{0,1\}^{P} \rightarrow\{0,1\}$ is given. For a multi-partition $\pi=\left\{\pi_{u j}: u=1, \ldots, t, j=1, \ldots, p\right\}$ let

$$
r(\pi)_{j} \equiv \prod_{u=1}^{t} \prod_{j \in \pi_{u j}} r_{u i} \text { for each } j=1, \ldots, p
$$

and

$$
R(\pi) \equiv \sum_{s \in\{0,1]^{P}} J(s)\left\{\prod_{\{j: s j=0\}}\left[1-r(\pi)_{j}\right]\right\}\left\{\prod_{\{j: s j=1\}} r(\pi)_{j}\right\}
$$

It is claimed in [6] that the proof in [3] that there exists a monotone multi-partition π which maximizes $R($.$) over all multi-partitions has a flaw as the$ statistics $\sum_{j} \sum_{u} \max \pi_{u j}$ need not decline strictly as pairs of parts are rearranged iteratively (while preserving optimality). But, the argument in [3] made no such claim. The core of the argument in [3] lies in an an inductive proof (Lemma 2) that considers a relaxation of the problem (removed later on) that requires that the inequalities in (1) hold strictly and that some item type w has $n_{w j}>0$ for each j. The adopted inductive hypothesis is that some parts j_{1}, \ldots, j_{k-1} are ordered monotonically, in order, in some optimal multi-partition π (that is, the parts in j_{1} of all types are those with the smalles indices, those in j_{2} are the next ones, etc.). Let j_{k} be the (unique) index for which $\pi_{w j_{k}}$ contains $\sum_{r=1}^{k-1} n_{w j_{r}}+1$. With π^{\prime} as the multi-partition that minimizes $\left[\sum_{u} \max \pi_{u j_{k}}\right.$] over the optimal multi-partitions τ that have parts j_{1}, \ldots, j_{k-1} fixed in the above monotone arrangement and have $\sum_{r=1}^{k-1} n_{w j_{r}}+1 \in \tau_{w j_{k}}$, it is argued that π^{\prime} and j_{1}, \ldots, j_{k} satisfy the inductive hypothesis with k repalacing $k-1$. With $k=p$, the inductive hypothesis establishes that there exists a monotone optimal multi-partition. Essentially, the argument we just described shows that within the class of multi-partitions τ that have parts j_{1}, \ldots, j_{k-1} fixed in a monotone arrangement and have $\sum_{r=1}^{k-1} n_{w j_{r}}+1 \in \tau_{w j_{k}}$, one can rearrange pairs of parts so as to reduce $\sum_{u} \max \pi_{u j_{k}}$. But, no claim is made in [3] about reducing $\sum_{j} \sum_{u} \max \pi_{u j}$; in fact, examples in [6, Section 5] demonstrate that $\sum_{j} \sum_{u} \max \pi_{u j}$ need not decline in the above process.

The approach followed in [3] (and explained in the preceding paragraph) can be cast as a sortability argument with the lexicographic statistics:

$$
\begin{aligned}
S(\pi) \equiv & \left(\min _{j_{1}} \frac{\sum_{u} \max \pi_{u j_{1}}}{\sum_{u} n_{u j_{1}}}, \min _{j_{1}, j_{2}} \frac{\sum_{u} \max \pi_{u j_{1}}+\sum_{u} \max \pi_{u j_{2}}}{\sum_{u} n_{u j_{1}}+\sum_{u} n_{u j_{2}}}, \ldots,\right. \\
& \left.\min _{j_{1}, \ldots, j_{k}} \frac{\sum_{r=1}^{k} \sum_{u} \max \pi_{u j_{r}}}{\sum_{r=1}^{k} \sum_{u} n_{u j_{r}}}, \ldots, \min _{j_{1}, \ldots, j_{p}} \frac{\sum_{r=1}^{p} \sum_{u} \max \pi_{u j_{r}}}{\sum_{r=1}^{p} \sum_{u} n_{u j_{r}}}\right) .
\end{aligned}
$$

where maxima over empty sets are defined as 0 and the assumption $n_{w j}>0$ for each j assures that no denominator is zero. In particular, note that $S(\pi)=(1, \ldots, 1)$ if and only if π is monotone. The essence of the proof in [3] is the demonstration that, when the inequalities in (1) are strict, $S($.$) can be reduced (lexicographically)$ within the class of optimal multi-partitions which are not monotone by pairwise shuffling of parts. This is accomplished by using the fact [3, Corollary 1] that if there is an optimal multi-partition which is not $\left(j_{1}, j_{2}\right)$-monotone, then all partitions which are the result of shuffles among part j_{1} and j_{2} are optimal. This property depends on the convexity of the function $g:(-\infty, 0]^{p} \rightarrow(0,1]$ with

$$
g(y)=\sum_{s \in\{0,1\}^{p}} J(s)\left[\prod_{\left\{i: s_{i}=0\right\}}\left(1-e^{y i}\right)\right]\left[\prod_{\left\{i: s_{i}=1\right\}} e^{y_{i}}\right] \quad \text { for every } y \in(-\infty, 0]^{p},
$$

and does not extend to asymmetric Schur convex functions (see [5]). We further note that the removal of the assumptions that one item-type is required by all the parts and that the inequalities of (1) hold strictly are not standard 'sortability arguments' (as considered, for example, in [6]).

References

1. Chang, G.J., Chen, F.L., Huang, L.L., Hwang, F.K., Nuan, S.T., Rothblum, U.G., Sun, I.F., Wang, J.W. and Yeh, H.G. (1999), Sortabilities of partition properties, J. Combinatorial Optimization, 2, 413-427.
2. Hwang, F.K., Lee, J.S., Liu, Y.C. and Rothblum, U.G. (2003), Sortability of vector partitions, Discrete Mathematics, 263, 129-142.
3. Hwang, F.K. and Rothblum, U.G. (1994), Optimality of monotone assemblies for coherent systems composed of series modules, Operations Research, 42, 709-720.
4. Hwang, F.K., Rothblum, U.G. and Yao, Y-C. (1996), Localizing combinatorial properties of partitions, Discrete Mathematics, 160, 1-23.
5. Hwang, F.K. and Rothblum, U.G. (1996), Directional-quasi-convexity, asymmetric Schurconvexity and optimality of consecutive partitions, Mathematics of Operations Research, 21, 540-554.
6. Hwang, F.K., Wang, Y.M. and Lee, J.S. (2002), Sortability of multi-partitions, J. Global Optimization, 24, 463-472.
